
1.1: 线性方程组
Systems of Linear Equations
- 使用初等行运算解线性方程组
Use elementary row operations to solve systems of linear equations - 判断线性方程组是否相容
Determine if a system of linear equations is consistent - 确定线性系统相容的条件
Determine the conditions for which a linear system is consistent - 判断关于线性方程组、行运算或矩阵的陈述的有效性
Determine the validity of statements about systems of linear equations, row operations, or matrices
1.2: 行简化与阶梯形态
Row Reduction and Echelon Forms
- 识别阶梯形矩阵和简化阶梯形矩阵
Identify matrices in echelon form and reduced echelon form - 将矩阵行化简为简化阶梯形
Row reduce matrices to reduced echelon form - 求给定增广矩阵方程组的通解
Find the general solution to a system with a given augmented matrix - 根据对应系数矩阵的描述判断解是否一致
Determine if a solution is consistent given a description of the corresponding coefficient matrix - 确定线性系统在何种条件下具有特定类型的解
Determine the conditions for which a linear system has specified types of solutions - 判断关于行化简和阶梯形矩阵陈述的正确性
Determine the validity of statements about row reduction and echelon forms - 运用行化简解决应用问题
Solve applications using row reduction
1.3: 向量方程
Vector Equations
- 计算向量的和与标量积,包括代数方法和几何方法
Compute sums and scalar products of vectors, both algebraically and geometrically - 在向量方程与方程组之间进行转换
Convert between vector equations and systems of equations - 判断一个向量是否为其他向量的线性组合
Determine if a vector is a linear combination of other vectors. - 用代数或几何方法描述向量组的张成空间
Characterize the span of a set of vectors algebraically or geometrically. - 判定关于向量及向量方程陈述的正确性
Determine the validity of statements about vectors and vector equations. - 解决涉及向量方程的应用问题
Solve applications involving vector equations.
^HW1^
1.4: 矩阵方程 Ax=b
The Matrix Equation Ax = b
- 计算矩阵与向量的乘积
Compute the product of a matrix and a vector. - 在矩阵方程、向量方程和方程组之间进行转换
Convert between matrix equations, vector equations, and systems of equations. - 使用增广矩阵求解矩阵方程
Solve matrix equations using augmented matrices. - 描述矩阵列向量的生成空间
Characterize the span of the column vectors of a matrix. - 判断矩阵方程无解、有唯一解还是有无穷多解
Determine whether a matrix equation has no solution, one solution, or infinitely many solutions. - 判定关于向量方程和矩阵方程的陈述是否成立
Determine the validity of statements about vector equations and matrix equations. - 解决涉及矩阵方程的应用问题
Solve applications involving matrix equations.
1.5: 线性系统的解集
Solution Sets of Linear Systems
- 判断一个方程组是否有非平凡解
Determine if a system of equations has a nontrivial solution. - 解方程组或矩阵方程,并以参数形式写出解
Solve a system of equations or a matrix equation and write the solution in parametric form. - 从几何角度描述方程组的解集
Describe the solution sets of systems of equations geometrically. - 判断关于线性方程组解集的陈述是否正确
Determine the validity of statements about solution sets of linear equations.
1.6*: 线性系统的应用
Applications of Linear Systems
^HW2^
1.7: 线性无关
Linear Independence
- 判断一组向量是否线性无关,并确定一个向量是否在给定的张成空间中
Determine if a set of vectors is linearly independent and determine if a vector is in a given span. - 确定向量线性无关或具有给定张成空间的条件
Determine conditions for which vectors are linearly independent or have a given span. - 判断关于线性独立性的陈述的有效性
Determine the validity of statements about linear independence.
^HW3^
– – -MID 1- – –
1.8: 线性变换简介
Introduction to Linear Transformations

- 代数方法求解给定向量在线性变换下的图像
Algebraically find the image of a given vector under a linear transformation. - 给定线性变换
,针对像中的给定
求解
Given a linear transformation T(x)=Ax, find x for a given b in the image of T. - 确定线性变换具有给定定义域和陪域的条件
Determine the conditions for which a linear transformation has a given domain and codomain.
- 判断向量是否属于线性变换的值域
Determine if a vector is in the range of a linear transformation. - 几何描述向量在线性变换下的图像
Geometrically describe the image of a vector under a linear transformation.
剪切变换
放缩变换
旋转变换
镜像变换
投射变换 - 利用变换的线性性质求向量在变换下的图像
Use the linearity of transformations to find the images of vectors under the transformation. - 判定关于线性变换陈述的有效性
Determine the validity of statements about linear transformations.
1.9: 线性变换的矩阵
The Matrix of a Linear Transformation
- 求线性变换的标准矩阵

Find the standard matrix of a linear transformation. - 求在线性变换下像为给定向量的原像向量
Find vectors whose images under a linear transformation are given. - 判断关于线性变换性质的陈述是否正确
Determine the validity of statements about properties of linear transformations. - 判断线性变换是否为单射或满射
Determine if linear transformations are one-to-one or onto.
^HW4^
1.10*: 商业、科学与工程中的线性模型
Linear Models in Business, Science, and Engineering
2.1: 矩阵运算
Matrix Operations
- 计算矩阵的和、积及标量积
Compute sums, products, and scalar products of matrices. - 寻找满足给定矩阵乘积性质的矩阵值
Find values of matrices such that products of matrices have given properties. - 判定关于矩阵运算的陈述是否成立
Determine the validity of statements about matrix operations.
2.2: 矩阵的逆
The Inverse of a Matrix
- 使用公式求
矩阵的逆矩阵
Find the inverse of a 2×2 matrix using the formula. - 利用矩阵的逆求解线性方程组
Use the inverse of a matrix to solve a linear system. - 判断关于矩阵逆的陈述是否正确
Determine the validity of statements about inverses of matrices. - 求解涉及可逆矩阵的方程
Solve equations involving invertible matrices. - 通过行约简法求矩阵的逆
Find the inverse of a matrix using row reduction.
2.3: 可逆矩阵的特征
Characterizations of Invertible Matrices
- 利用可逆矩阵定理判断关于矩阵的陈述是否成立
Use the Invertible Matrix Theorem to determine the validity of statements about matrices. - 求线性变换的逆变换
Find the inverse of a linear transformation.
2.8*: Rn 的子空间
Subspaces of Rn
2.9*: 维度与秩
Dimension and Rank
^HW4^
3.1: 行列式简介
Introduction to Determinants
- 使用余子式展开计算行列式
Compute determinants using cofactor expansions. - 确定初等行变换对行列式的影响
Determine the effect of elementary row operations on a determinant. - 计算矩阵标量倍数的行列式
Calculate determinants of scalar multiples of matrices.
3.2: 行列式的性质
Properties of Determinants
- 识别行列式的性质
Identify properties of determinants - 通过行化简为阶梯形求行列式
Find determinants by row reduction to echelon forms. - 利用行列式的性质计算行列式
Use properties of determinants to evaluate determinants. - 证明行列式的性质
Prove properties of determinants - 用行列式判断矩阵是否可逆或向量组是否线性无关
Use determinants to determine if a matrix is invertible or a set of vectors is linearly independent - 判断关于行列式性质的命题是否正确
Determine the validity of statements about properties of determinants.
^HW5^
4.1: 向量空间与子空间
Vector Spaces and Subspaces
- 判断给定集合是否为向量空间
Determine whether a given set is a vector space. - 判断给定集合是否为子空间
Determine whether a given set is a subspace. - 判断关于向量空间和子空间陈述的有效性
Determine the validity of statements about vector spaces and subspaces. - 解决涉及向量空间和子空间的应用问题
Solve applications involving vector spaces and subspaces.
4.2: 零空间、列空间与线性变换
Null Spaces, Column Spaces, and Linear Transformations
- 判断一个向量是否位于矩阵的零空间或列空间中
Determine whether a vector is in the null or column space of a matrix. - 在矩阵的零空间、列空间或行空间中找到一个非零向量
Find a nonzero vector in the null, column, or row space of a matrix. - 判断关于线性变换及零空间、列空间和行空间的陈述是否正确
Determine the validity of statements about linear transformations and null, column, and row spaces. - 利用零空间和列空间的理论来求解线性系统的解
Use the theory of null and column spaces to find solutions of linear systems.
4.3: 线性无关集;基底
Linearly Independent Sets; Bases
- 判断一个集合是否线性无关,是否为向量空间的基,或是否张成向量空间
Determine whether a set is linearly independent, or is a basis for, or spans a vector space. - 寻找矩阵的零空间、列空间或行空间的基
Find bases for the null, column, or row space of a matrix. - 寻找一组向量张成空间的基
Find a basis for the span of a set of vectors. - 判断关于线性无关集和基的陈述的正确性
Determine the validity of statements about linearly independent sets and bases.
4.5: 向量空间的维度
The Dimension of a Vector Space
- 寻找矩阵子空间的维度
Find the dimension of a subspace. - 寻找矩阵的零空间、列空间和行空间的维度
Find the dimensions of the null, column, and row spaces for a matrix.
4.6*: 基变换
Change of Basis
^HW6^
– – -MID 2- – –
5.1: 特征向量和特征值
Eigenvectors and Eigenvalues
- 判断一个向量或数是否为给定矩阵的特征向量或特征值
Determine if a vector or number is an eigenvector or eigenvalue of a given matrix. - 找到对应于某个特征值的特征空间的基
Find a basis for the eigenspace corresponding to an eigenvalue. - 求矩阵的特征值
Find the eigenvalues of matrices. - 判断关于特征向量和特征值的陈述是否正确
Determine the validity of statements about eigenvectors and eigenvalues.
5.2: 特征方程
The Characteristic Equation
- 求一个
矩阵的特征多项式及特征值
Find the characteristic polynomial and eigenvalues of a 2×2 matrix. - 求一个
矩阵的特征多项式
Find the characteristic polynomial of a 3×3 matrix. - 求三角矩阵的特征值
Find the eigenvalues of triangular matrices.
^HW7^
5.3: 对角化
Diagonalization
- 计算
对于
的值
- 使用对角化定理求矩阵的特征值及每个特征空间的基
- 对矩阵进行对角化
- 判断关于对角化的陈述是否有效
- 判定矩阵是否可对角化
- 回答关于矩阵对角化的概念性问题
5.4*: 特征向量与线性变换
Eigenvectors and Linear Transformations
6.1: 内积、长度与正交性
Inner Product, Length, and Orthogonality
- 使用内积对向量进行运算
Perform operations on vectors using inner products. - 找到一个单位向量
Find a unit vector - 找出两个向量之间的距离
Find the distance between two vectors - 判断两个向量是否正交
Determine whether two vectors are orthogonal
6.2: 正交集
Orthogonal Sets
- 判断一组向量是否正交
Determine whether a set of vectors is orthogonal. - 找到通过给定向量和原点的直线的正交投影
Find an orthogonal projection onto a line through a given vector and the origin. - 将一个向量表示为两个正交向量的和
Write a vector as a sum of two orthogonal vectors. - 求向量与通过原点的直线之间的距离
Find the distance between a vector and a line through the origin. - 判断一组向量是否标准正交
Determine whether a set of vectors is orthonormal. - 判断关于正交集合或矩阵及正交投影的陈述的有效性
Determine the validity of statements about orthogonal sets or matrices and orthogonal projections.
6.3: 正交投影
Orthogonal Projections
- 求向量的正交分解
Find the orthogonal decomposition of a vector. - 求给定子空间上的正交投影
Find an orthogonal projection onto a given subspace. - 使用最佳逼近定理求最近点或距离
Use the best approximation theorem to find the closest point or a distance. - 构造与给定正交集正交的向量
Construct a vector that is orthogonal to a given orthogonal set. - 判断关于子空间正交投影陈述的正确性
Determine the validity of statements about orthogonal projections onto subspaces.
^HW8^
6.4: 格拉姆-施密特过程
The Gram-Schmidt Process
- 使用格拉姆-施密特过程生成正交基,并找到正交基
Use the Gram-Schmidt process to produce an orthogonal basis and find an orthonormal basis.
^HW9^
6.5: 最小二乘问题
Least-Squares Problems
- 使用正规方程求系统的最小二乘解
Use normal equations to find least-squares solutions of systems. - 判断关于最小二乘解陈述的有效性
Determine the validity of statements about least-squares solutions.
6.6*: 线性模型的应用
Applications to Linear Models
^HW10^
7.1: 对称矩阵的对角化
Diagonalization of Symmetric Matrices
- 判定关于对称矩阵陈述的有效性
Determine the validity of statements about symmetric matrices. - 运用对称矩阵的谱定理寻找对称矩阵的谱分解
Use the Spectral Theorem for Symmetric Matrices to find a spectral decomposition of symmetric matrices.
7.4: 奇异值分解
The Singular Value Decomposition
- 求矩阵的奇异值
Find the singular values of a matrix. - 求矩阵的奇异值分解
Find a singular value decomposition of a matrix. - 利用矩阵的奇异值分解求特定值或向量
Use the singular value decomposition of a matrix to find particular values or vectors.
